Mechanistic insights into the impact of Cold Atmospheric Pressure Plasma on human epithelial cell lines
نویسندگان
چکیده
Compelling evidence suggests that Cold Atmospheric Pressure Plasma (CAPP) has potential as a new cancer therapy. However, knowledge about cellular signaling events and toxicity subsequent to plasma treatment is still poorly documented. The aim of this study was to focus on the interaction between 3 different types of plasma (He, He-O2, He-N2) and human epithelial cell lines to gain better insight into plasma-cell interaction. We provide evidence that reactive oxygen and nitrogen species (RONS) are inducing cell death by apoptosis and that the proteasome, a major intracellular proteolytic system which is important for tumor cell growth and survival, is a target of (He or He-N2) CAPP. However, RONS are not the only actors involved in cell death; electric field and charged particles could play a significant role especially for He-O2 CAPP. By differential label-free quantitative proteomic analysis we found that CAPP triggers antioxidant and cellular defense but is also affecting extracellular matrix in keratinocytes. Moreover, we found that malignant cells are more resistant to CAPP treatment than normal cells. Taken together, our findings provide insight into potential mechanisms of CAPP-induced proteasome inactivation and the cellular consequences of these events.
منابع مشابه
Cytotoxicity Effect of Cold Atmospheric Plasma on Melanoma (B16-F10), Breast (MCF-7) and Lung (A549) Cancer Cell Lines Compared with Normal Cells
Background and purpose: Cancer is one of the major health challenges in the world. The efficacy of current treatments is low but their side effects are high. Cold atmospheric plasma (CAP) is a new modality for cancer treatment. This study aimed to compare the cytotoxicity effect of CAP on the cell line models of common cancers and normal cells. Materials and methods: In this experimental study...
متن کاملIn vitro Assessment of Antiviral Activity of Cold Atmospheric Pressure Plasma Jet against the Human Immunodeficiency Virus (HIV)
Introduction: The human immunodeficiency virus (HIV) is a threat to global health and the need for finding new methods of antivirus research, in particular against HIV has increased in recent years. In this study, we investigated the ability of the cold atmospheric pressure plasma jet (CAPPJ) using helium to inhibit the replication of HIV virions. Methods: Single cycle replicable HIV (SCR-HIV) ...
متن کاملThe effects of copper nanoparticles and cold atmospheric plasma on biochemical indices of Dracocephalum moldavica
The Moldavian dragonhead (Dracocephalum moldavica L., Lamiaceae) is an annual medicinal plant with beneficial nutritional sources that plays important roles in human and animal feed. Nanoparticles and cold atmospheric plasma increase biochemical compounds in plants. In this study, the effects of copper nanoparticles and cold atmospheric plasma on biochemical indices of the medicinal plant Draco...
متن کاملPlasma jet impacts on Citrinin production in isolates belonging to Penicillium Spp.
Mycotoxins such as Citrinin are small toxic molecules produced by a great variety of microorganism, which encompass several classes of secondary metabolites with no common chemical structure or mode of action. Citrinin produces by different species of Penicillium. Today, the cold atmospheric pressure plasma (CAPP) method has a potential for mycotoxin detoxification. In this study, a new and pro...
متن کاملEffect of non-thermal atmospheric pressure plasma on MDA-MB-231 breast cancer cells
Cold atmospheric plasma (CAP) has received great attention due to its noteworthy ability, and has also been widely studied over few decades in physics, biology and medicine. The purpose of this study is to evaluate the cold atmospheric pressure plasma effects on the proliferation of breast cancer cells. MDA-MB-231 was used for this experiment. MDA-MB-231 cells were cultured in 24-well plate and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017